Abstract

Background/Objectives: Computed tomography (CT)-guided transbronchial metallic coil marking is useful for identifying the locations of small peripheral pulmonary lesions. Even deeply located lesions may be accurately identified and resected with adequate margins. This method is also applicable to multiple lesions. The present study examined the efficacy of our marking method using cone-beam CT (CBCT) under general anesthesia in a hybrid operation room. Methods: In the hybrid operation room, an ultrathin bronchoscope was inserted into the objective bronchus under virtual bronchoscopic navigation, and a metallic coil was installed under CBCT guidance. The lesion was then resected with wedge resection by single- or 3-port video-assisted thoracoscopic surgery under fluorescence guidance. Eighty-seven patients with 90 lesions were treated between October 2016 and December 2022. The median lesion size was 11 mm and the median distance from the pleural surface was 8.7 mm. Lesions comprised 19 pure ground-glass nodule (GGN), 35 partly solid, and 36 solid types. Results: All lesions were visualized by CBCT, and metallic coils were installed into the objective bronchi. The median distance from lesions to coils was 3.6 mm, and the median marking time was 23.5 min. All lesions were resected with sufficient margins. In total, 57 lesions were diagnosed as primary lung cancer, 26 as metastatic lung tumors, 3 as nodular lymphoid hyperplasia, and 4 as others. There were no complications associated with the marking procedure. Conclusions: CBCT represents an alternative modality for identifying peripheral lung lesions due to its ability to visualize even small GGNs. It is a minimally invasive technique because the treatment sequence is completed under general anesthesia with the same quality as previous methods performed in a CT-equipped interventional radiology suite.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.