Abstract

Intraoperative cancer imaging and fluorescence-guided surgery have attracted considerable interest because fluorescence signals can provide real-time guidance to assist a surgeon in differentiating cancerous and normal tissues. Recent advances have led to the clinical use of a natural fluorophore called protoporphyrin IX (PpIX) for image-guided surgical resection of high-grade brain tumors (glioblastomas). However, traditional fluorescence imaging methods have only limited detection sensitivity and identification accuracy and are unable to detect low-grade or diffuse infiltrating gliomas (DIGs). Here we report a low-cost hand-held spectroscopic device that is capable of ultrasensitive detection of protoporphyrin IX fluorescence in vivo, together with intraoperative spectroscopic data obtained from both animal xenografts and human brain tumor specimens. The results indicate that intraoperative spectroscopy is at least 3 orders of magnitude more sensitive than the current surgical microscopes, allowing ultrasensitive detection of as few as 1000 tumor cells. For detection specificity, intraoperative spectroscopy allows the differentiation of brain tumor cells from normal brain cells with a contrast signal ratio over 100. In vivo animal studies reveal that protoporphyrin IX fluorescence is strongly correlated with both MRI and histological staining, confirming that the fluorescence signals are highly specific to tumor cells. Furthermore, ex vivo spectroscopic studies of excised brain tissues demonstrate that the hand-held spectroscopic device is capable of detecting diffuse tumor margins with low fluorescence contrast that are not detectable with current systems in the operating room. These results open new opportunities for intraoperative detection and fluorescence-guided resection of microscopic and low-grade glioma brain tumors with invasive or diffusive margins.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.