Abstract

The spinal cord is a major structure of the central nervous system allowing, among other things, the transmission of afferent sensory and efferent motor information. During spinal surgery, such as scoliosis correction, this structure can be damaged, resulting in major neurological damage to the patient. To date, there is no direct way to monitor the oxygenation of the spinal cord intraoperatively to reflect its vitality. This is essential information that would allow surgeons to adapt their procedure in case of ischemic suffering of the spinal cord. We report the development of a specific device to monitor the functional status of biological tissues with high resolution. The device, operating with multiple wavelengths, uses Near-InfraRed Spectroscopy (NIRS) in combination with other additional sensors, including ElectroNeuroGraphy (ENG). In this paper, we focused primarily on aspects of the PhotoPlethysmoGram (PPG), emanating from four different light sources to show in real time and record biological signals from the spinal cord in transmission and reflection modes. This multispectral system was successfully tested in in vivo experiments on the spinal cord of a pig for specific medical applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.