Abstract
Intraoperative neuromonitoring of the chemical senses (smell and taste) has never been performed. The objective of this study was to determine if olfactory-evoked potentials could be obtained intraoperatively under general anesthesia. A standard olfactometer was used in the surgical theater with hydrogen sulfide (4 ppm, 200 msec). Olfactory-evoked potentials were recorded in 8 patients who underwent neurosurgery for resection of cerebral lesions. These patients underwent routine target-controlled propofol and sufentanil general anesthesia. Frontal, temporal, and parietal scalp subdermal electrodes were recorded ipsilaterally and contralaterally at the site of the surgery. Evoked potentials were computed if at least 70 epochs (0.5-100 Hz) satisfying the artifact rejection criterion (threshold 45 μV) could be extracted from signals of electrodes. Contributive recordings were obtained for 5 of 8 patients (3 patients had fewer than 70 epochs with an amplitude < 45 μV). Olfactory-evoked potentials showed N1 responses (mean 442.8 ± 40.0 msec), most readily observed in the patient who underwent midline anterior fossa neurosurgery. No component of later latencies could be recorded consistently. The study confirms that olfactory-evoked potentials can be measured in response to olfactory stimuli under general anesthesia. This demonstrates the feasibility of recording olfactory function intraoperatively and opens the potential for neuromonitoring of olfactory function during neurosurgery.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.