Abstract

The aim of this study was to evaluate whether intraoperative magnetic resonance (MR) imaging can increase the efficacy of transsphenoidal microsurgery, primarily in non-hormone-secreting intra- and suprasellar pituitary macroadenomas. Intraoperative imaging was performed using a 0.2-tesla MR imager, which was located in a specially designed operating room. The patient was placed supine on the sliding table of the MR imager, with the head placed near the 5-gauss line. A standard flexible coil was placed around the patient's forehead. Microsurgery was performed using MR-compatible instruments. Image acquisition was started after the sliding table had been moved into the center of the magnet. Coronal and sagittal T1-weighted images each required over 8 minutes to acquire, and T2-weighted images were obtained optionally. To assess the reliability of intraoperative evaluation of tumor resection, the intraoperative findings were compared with those on conventional postoperative 1.5-tesla MR images, which were obtained 2 to 3 months after surgery. Among 44 patients with large intra- and suprasellar pituitary adenomas that were mainly hormonally inactive, intraoperative MR imaging allowed an ultra-early evaluation of tumor resection in 73% of cases; such an evaluation is normally only possible 2 to 3 months after surgery. A second intraoperative examination of 24 patients for suspected tumor remnants led to additional resection in 15 patients (34%). Intraoperative MR imaging undoubtedly offers the option of a second look within the same surgical procedure, if incomplete tumor resection is suspected. Thus, the rate of procedures during which complete tumor removal is achieved can be improved. Furthermore, additional treatments for those patients in whom tumor removal was incomplete can be planned at an early stage, namely just after surgery.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.