Abstract

To investigate intraoperative kinematics during passive flexion using a surgical navigation system for knees undergoing posterior stabilized (PS) total knee arthroplasty (TKA) with an asymmetric helical post-cam design using navigation system. In total, 45 knees with both pre- and postoperative kinematic data available were included in the study. Intraoperative kinematic measurements were performed during the course of surgery using the software incorporated in the navigation system. Measurements were performed at the following two time points: (1) before TKA procedure and (2) after TKA implantation. Among the kinematic parameters studied, anterior/posterior translation and axial rotation during flexion were subjected to the analysis. Before surgery, physiologic anterior/posterior translational pattern of the tibia during flexion (rollback of the femur) was found in only 15.6% of the knees. After TKA implantation, postoperative kinematic measurement showed no significant change in the tibial translational during knee flexion. Similarly, with regard to rotation, non-physiologic external tibial rotation in early flexion was observed in the majority of the knees before surgery, and this abnormal kinematic pattern remained after the TKA procedure. The intraoperative three-dimensional motion analysis using a navigation system showed that the physiologic kinematic pattern (anterior translation and internal rotation of the tibia during flexion) of the knee was distorted in osteoarthritic knees undergoing TKA. The abnormal kinematic pattern before surgery was not fully corrected even after implantation of the PS TKA designed to induce natural knee motion; however, no clear relationship between the intraoperative kinematic pattern and knee flexion angle at one year was demonstrated, and the effect of knee kinematics on postoperative knee function and patient's satisfaction is still unclear.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.