Abstract
PurposeA computer-assisted surgical system must provide up-to-date and accurate information of the patient’s anatomy during the procedure to improve clinical outcome. It is therefore essential to consider the tissue deformations, and a patient-specific biomechanical model (PBM) is usually adopted. The predictive capability of the PBM is highly influenced by proper definition of attachments to the surrounding anatomy, which are difficult to estimate preoperatively.MethodsWe propose to predict the location of attachments using a deep neural network fed with multiple partial views of the intraoperative deformed organ surface directly encoded as point clouds. Compared to previous works, providing a sequence of deformed views as input allows the network to consider the temporal evolution of deformations and to handle the intrinsic ambiguity of estimating attachments from a single view.ResultsThe method is applied to computer-assisted hepatic surgery and tested on both a synthetic and in vivo human open-surgery scenario. The network is trained on a patient-specific synthetic dataset in less than 5 h and produces a more accurate intraoperative estimation of attachments than applying the ones generally used in liver surgery (i.e., fixing vena cava or falciform ligament). The obtained results show 26% more accurate predictions than other solution previously proposed.ConclusionsTrained with patient-specific simulated data, the proposed network estimates the attachments in a fast and accurate manner also considering the temporal evolution of the deformations, improving patient-specific intraoperative guidance in computer-assisted surgical systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Computer Assisted Radiology and Surgery
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.