Abstract

Electrically evoked compound action potentials (eCAPs) obtained from cochlear implant (CI) recipients reflect responsiveness of the auditory nerve to electrical stimulation. The recent use of atraumatic electrode arrays and expansion of CI candidacy to listeners with greater residual hearing may lead to increased clinical utility of intraoperative eCAP recordings. To examine the effect of electrode array (slim modiolar versus slim straight) on suprathreshold intraoperative eCAP recordings in hearing preservation CI recipients. A secondary goal was to examine potential clinical applications of intraoperative eCAPs for predicting immediate hearing preservation and speech perception outcomes. Retrospective study of 113 adult hearing preservation CI candidates implanted from 2015 to 2019 with either a slim modiolar or slim straight electrode array. Intraoperative eCAP growth functions and maximum amplitudes were obtained at several intracochlear electrodes and examined as a function of implanted array and hearing preservation status, while controlling for electrode impedance. From basal to apical electrodes, progressively larger eCAP amplitudes and steeper slopes were recorded. Steeper eCAP slopes at apical electrodes were also seen for recipients of the slim modiolar array (versus slim straight). Suprathreshold eCAP responses did not differ as a function of hearing preservation and were not associated with speech recognition. More robust eCAP responses were obtained from apical electrodes, which is consistent with better low-frequency thresholds in hearing preservation recipients. This effect was compounded by type of electrode array. Results also suggest that intraoperative, suprathreshold eCAPs cannot be used to predict the success of hearing preservation surgery or performance with the CI.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call