Abstract

BackgroundFor establishing femoral component position, gap-balancing (GB) and measured resection (MR) techniques were compared using a force sensor. MethodsNinety-one patients were randomized to undergo primary total knee arthroplasty using either MR (n = 43) or GB (n = 48) technique using a single total knee arthroplasty design. GB was performed with an instrumented tensioner. Force sensor data were obtained before the final implantation. ResultsGB resulted in greater range of femoral component rotation vs MR (1.5° ± 2.9° vs 3.1° ± 0.5°, P < .05) and posterior condylar cut thickness medially (10.2 ± 2.0 mm vs 9.0 ± 1.3 mm) and laterally (8.5 ± 1.9 mm vs 6.4 ± 1.0 mm). Force sensor data showed a decreased intercompartmental force difference at full flexion in GB (.8 ± 2.3 vs 2.0 ± 3.3u, 1u ≈ 15 N, P < .05). ConclusionGB resulted in a greater range of femoral component rotation and thicker posterior condylar cuts resulting in an increased flexion space relative to MR. Intercompartmental force difference trended toward a more uniform distribution between full extension and full flexion in the GB vs MR group.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.