Abstract

ABSTRACT The role of IBA in regulating the recovery of liver cancer was investigated using a rat model of liver cancer and an intraoperative blood return model (IBA). SD rats were used to construct the IBA model. Kupffer cells were isolated from liver cancer tissues, and their biological characteristics were analyzed by flow cytometry. Comet assay was used to detect DNA damage in tumor cells; clone formation assay and transwell assay were used to detect tumor cell proliferation and migration ability. Western blot analysis was used to determine the changes in related signaling pathways. After the IBA treatment, the production of KCs was significantly promoted in rat liver cancer tissues, and the expression levels of cell cycle arrest proteins P53, AEN and CDKN1A were also significantly increased. In tumor cells, IBA induced cell cycle arrest and cellular DNA damage in a p53-mediated manner. In addition, the proliferation and migration of cancer cells were also significantly inhibited. Similar to the in vivo data, the expression of TP53, AEN and CDKN1A was also up-regulated. Our study showed that IBA can inhibit the malignant transformation of hepatocellular carcinoma by modulating the function-dependent p53-mediated pathway of tumor cells and KCs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call