Abstract
Purpose: The purpose of the study was to determine the intraocular pressure response to normobaric hypoxia and the consequent recovery under additional well-controlled ambient conditions. Second, the study attempted to determine if the intraocular pressure changes were dependent on its baseline, initial heart rate, sex and arterial oxygen saturation.Methods: Thirty-eight visually healthy volunteers (23 women and 15 men) of an average age 25.2 ± 3.8 years from 49 recruited participants met the inclusion criteria and performed the complete test. Initial intraocular pressure (baseline), heart rate, and arterial oxygen saturation were measured after 7 min of rest under normal ambient conditions at an altitude 250 m above sea level. Each subject then underwent a 10 min normobaric hypoxic exposure and a subsequent 7 min recovery under normoxic conditions. Within hypoxic period, subjects were challenged to breathe hypoxic gas mixture with fraction of inspired oxygen of 9.6% (~6.200 m above sea level). Intraocular pressure and arterial oxygen saturation were re-measured at 4 and 10 min during the hypoxia and at 7 min after hypoxia termination.Results: Intraocular pressure increased in 1.2 mmHg ± 1.9 mmHg and 0.9 mmHg ± 2.3 mmHg at 4 and 10 min during the hypoxic period and returned approximately to the baseline at 7 min of recovery. The influence of sex was not statistically significant. The arterial oxygen saturation decreased in 14.9 ± 4.2% at min 4 and 18.4 ± 5.8% at min 10 during hypoxia and returned to the resting value at 7 min of recovery. The decrease was slightly higher in the case of women if compared with men. The hypoxia induced changes in intraocular pressure were significantly correlated with the arterial oxygen saturation changes, whereas the relationship with intraocular pressure baseline and initial heart rate were insignificant.Conclusion: There was a significant increase in intraocular pressure as a response to short-term normobaric hypoxia, which returned to the baseline in 7 min after hypoxia. The increase was dependent on the induced oxygen desaturation.
Highlights
Active vacations at high altitudes such as skiing, heli-skiing, hiking, and mountain climbing have become increasingly popular for people all around the world
A statistically significant increase in intraocular pressure (IOP) compared with the baseline (IOPr = 16.0 mmHg ± 2.2 mmHg) was observed during the hypoxic period with the mean difference 1.2 mmHg ± 1.9 mmHg at minute 4 and 0.9 mmHg ± 2.3 mmHg at minute 10; both hypoxic IOP values did not differ significantly from one another (p = 0.68, d = 0.210)
The IOP returned to the baseline at 7 min recovery
Summary
Active vacations at high altitudes such as skiing, heli-skiing, hiking, and mountain climbing have become increasingly popular for people all around the world. Various altitude or hypoxic activities are included to the training strategies of elite athletes [2]. Such activities should have consequences in their health status including ocular health. Higher IOP or its rapid changes are considered a risk factor for development of glaucoma changes [7]. The goal of the prevention of progression and the support of treatment in the case of developed high tension glaucoma is maintain the IOP in lower and steady values.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.