Abstract

To evaluate an algorithm for corneal power estimation in intraocular lens (IOL) power calculation after myopic laser refractive surgery using direct corneal measurements. International Vision Correction Research Centre, University of Heidelberg, Heidelberg, Germany. Corneal parameters in normal eyes and eyes of refractive surgery cases were evaluated by rotating Scheimpflug imaging. Corneal optical power (K(optical)) calculated by a Gaussian optics formula was simplified as K(optical) = K(anterior) + K(2) (K(anterior) = anterior corneal power; K(posterior) = posterior corneal power; K(2) = K(posterior)--K(anterior) x K(posterior) x corneal thickness/1.376). The variation and change in K(2) induced by refractive surgery were analyzed. A corrective algorithm to calculate K(optical) using mean K(2) (-6.10 diopters [D]), K(corrective) = 1.114 x measured K - 6.10, was derived based on statistical analysis, which was in accordance with the modified Maloney method. The IOL power after refractive surgery was calculated using K(corrective). The mean K(2) of normal and post-refractive corneas was -6.10 +/- 0.23 D and -6.16 +/- 0.17 D, respectively (P = .17). The mean refractive surgery-induced change in K(2) was -0.06 +/- 0.10 D. The variations in K(2) were small (95% confident interval, -6.55 to -5.65 [normal cornea]; -6.48 to -5.70 [pre-refractive]; - 6.49 to -5.83 [post-refractive)]. Using K(corrective) for IOL power calculation in post-refractive cases yielded mean absolute prediction errors of 0.58 +/- 0.52 D (Haigis), 0.59 +/- 0.49 D (double-K Hoffer Q), and 0.58 +/- 0.47 D (double-K SRK/T). The algorithm that induced low error in corneal power estimation was relatively reliable in IOL calculation after myopic laser refractive surgery. No author has a financial or proprietary interest in any material or method mentioned.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call