Abstract

Huntington disease and its related autosomal-dominant polyglutamine (pQ) neurodegenerative diseases are characterized by intraneuronal accumulation of protein aggregates. Studies on protein aggregates have revealed the importance of the ubiquitin-proteasome system as the front line of protein quality control (PQC) machinery against aberrant proteins. Recently, we have shown that the autophagy-lysosomal system is also involved in cytoplasmic aggregate degradation, but the nucleus lacked this activity. Consequently, the nucleus relies entirely on the ubiquitin-proteasome system for PQC. According to previous studies, nuclear aggregates possess a higher cellular toxicity than do their cytoplasmic counterparts, however degradation kinetics of nuclear aggregates have been poorly understood. Here we show that nuclear ubiquitin ligases San1p and UHRF-2 each enhance nuclear pQ aggregate degradation and rescued pQ-induced cytotoxicity in cultured cells and primary neurons. Moreover, UHRF-2 is associated with nuclear inclusion bodies in vitro and in vivo. Our data suggest that UHRF-2 is an essential molecule for nuclear pQ degradation as a component of nuclear PQC machinery in mammalian cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.