Abstract

Parkinson’s disease (PD) is characterized by a degeneration of the dopamine (DA) pathway from the substantia nigra (SN) to the basal forebrain. Prior studies in unilateral 6-hydroxydopamine (6-OHDA)-lesioned rats have primarily concentrated on the implantation of fetal ventral mesencephalon (VM) into the striatum in attempts to restore DA function in the target. We implanted solid blocks of fetal VM or fetal striatal tissue into the SN to investigate whether intra-nigral grafts would restore motor function in unilaterally 6-OHDA-lesioned rats. Intra-nigral fetal striatal and VM grafts elicited a significant and long-lasting reduction in apomorphine-induced rotational behavior. Lesioned animals with ectopic grafts or sham surgery as well as animals that received intra-nigral grafts of fetal cerebellar cortex showed no recovery of motor symmetry. Subsequent immunohistochemical studies demonstrated that VM grafts, but not cerebellar grafted tissue expressed tyrosine hydroxylase (TH)-positive cell bodies and were associated with the innervation by TH-positive fibers into the lesioned SN as well as adjacent brain areas. Striatal grafts were also associated with the expression of TH-positive cell bodies and fibers extending into the lesioned SN and an induction of TH-immunolabeling in endogenous SN cell bodies. This finding suggests that trophic influences of transplanted fetal striatal tissue can stimulate the re-expression of dopaminergic phenotype in SN neurons following a 6-OHDA lesion. Our data support the hypothesis that a dopaminergic re-innervation of the SN and surrounding tissue by a single solid tissue graft is sufficient to improve motor asymmetry in unilateral 6-OHDA-lesioned rats.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call