Abstract

The Large Area Telescope (LAT) on-board the Fermi Gamma-ray Space Telescope has detected γ-ray emission in about half a dozen narrow-line Seyfert 1 (NLSy1) galaxies. This indicates the presence of relativistic jets in these sources similar to blazars and radio galaxies. In an attempt to have an idea of the intranight optical variability (INOV) characteristics of these γ-ray-loud NLSy1 galaxies, we have carried out optical flux monitoring observations of three NLSy1 galaxies detected by Fermi/LAT: 1H 0323+342, PMN J0948+0022 and PKS 1502+036. These optical monitoring observations in RC band carried out during 2012 January–May showed the presence of rapid optical flux variations in these sources. The intranight differential light curves of these sources have revealed flux variations on time-scales of hours with amplitudes of variability >3 per cent for most of the time. However, for one source, PMN J0948+0022, we observed amplitude of variability as large as 52 per cent. On using the F-statistics to classify the variability nature of these sources, we obtained a duty cycle (DC) of INOV of ∼85 per cent. Alternatively, the more commonly used C-statistics gave a DC of INOV of ∼57 per cent. Such high DC of INOV is characteristics of the BL Lac class of active galactic nucleus. The results of our monitoring observations thus indicate that there is similarity in the INOV nature of γ-ray-loud NLSy1 galaxies and BL Lac objects, arguing strongly for the presence of relativistic jets aligned closely to the observers line of sight in γ-ray-loud NLSy1s. Moreover, our dense monitoring observations on some of the nights have led to the clear detection of some miniflares superimposed on the flux variations during the night over time-scales as short as 12 min. The detection of short time-scale flux variability in the sources studied here is clearly due to stronger time compression leading to the jets in these sources having large Doppler factors, similar to that of the inner jets of TeV blazars.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.