Abstract
Although transcranial magnetic stimulation (TMS) is routinely applied in neuroscience and clinical settings, not much is known about its effects on brain networks. Therefore, this pilot study was set up using repetitive navigated transcranial magnetic stimulation (rTMS) combined with resting-state functional MRI (rs-fMRI) to explore frequency-dependent stimulation effects on an intranetwork and internetwork level. Six healthy subjects (median age: 23.5 years) underwent two rTMS sessions (1 and 10 Hz), 7 days apart, and prestimulation and poststimulation rs-fMRI. Repetitive navigated transcranial magnetic stimulation was delivered to the left dorsolateral prefrontal cortex, with the exact stimulation target being determined by independent component analysis. Alterations of functional connectivity strength were evaluated using seed-based correlation analyses within and between the salience network, central executive network, and posterior and anterior default mode network. Low-frequency rTMS resulted in significant intranetwork alterations only for the anterior default mode network and primarily within the left hemisphere. In contrast, high-frequency rTMS led to changes within all four networks of interest. Moreover, the posterior and anterior default mode network largely showed opposite effects to rTMS, and the anterior default mode network was rather isolated from the other networks, which was especially true for low-frequency rTMS. Changes in functional connectivity strength because of low-frequency rTMS were even detectable 7 days after stimulation. This is one of the first studies using neuronavigated TMS with independent component analysis-based target selection to explore frequency-dependent stimulation effects in a combined rTMS-fMRI approach. Future studies including higher subject numbers may define the underlying mechanisms for the different responses to low- and high-frequency rTMS.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Journal of Clinical Neurophysiology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.