Abstract

Francisella tularensis is an intracellular gram-negative bacterium that is the causative agent of tularemia and a potential bioweapon. We have characterized the efficacy of a defined F. novicida mutant (DeltaiglC) as a live attenuated vaccine against subsequent intranasal challenge with the wild-type organism. Animals primed with the F. novicida DeltaiglC (KKF24) mutant induced robust splenic gamma interferon (IFN-gamma) and interleukin-12 (IL-12) recall responses with negligible IL-4 production as well as the production of antigen-specific serum immunoglobulin G1 (IgG1) and IgG2a antibodies. BALB/c mice vaccinated intranasally (i.n.) with KKF24 and subsequently challenged with wild-type F. novicida (100 and 1,000 50% lethal doses) were highly protected (83% and 50% survival, respectively) from the lethal challenges. The protection conferred by KKF24 vaccination was shown to be highly dependent on endogenous IFN-gamma production and also was mediated by antibodies that could be adoptively transferred to naive B-cell-deficient mice by inoculation of immune sera. Collectively, the results demonstrate that i.n. vaccination with KKF24 induces a vigorous Th1-type cytokine and antibody response that is protective against subsequent i.n. challenge with the wild-type strain. This is the first report of a defined live attenuated strain providing protection against the inhalation of F. novicida.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call