Abstract

Specific immunotherapy is less effective in patients with multiple allergic sensitizations compared with monosensitized patients. We therefore established a mouse model of polysensitization to the major birch and timothy grass pollen allergens to test whether allergic polysensitization can be prevented by multiple allergen application via the mucosal route. Female BALB/c mice were immunized intraperitoneally with recombinant (r) Bet v 1, rPhl p 1, and rPhl p 5. For intranasal tolerance induction, a mixture of the complete allergens was compared with allergen-derived immunodominant peptides applied either as a mixture or as a synthetic hybrid peptide composed of the T-cell epitopes of the 3 allergens. Intranasal application of the mixture of the complete allergen molecules did not prevent polysensitization to the same allergens. In contrast, pretreatment with a mixture of the immunodominant peptides or the hybrid peptide led to significantly reduced allergen-specific IgE responses in sera, IL-4 production in vitro, and suppressed airway inflammation. TGF-beta mRNA levels did not change, and IL-10 production was significantly suppressed after the pretreatment. The fact that the reduction of IL-10 was not abrogated after IL-10 receptor neutralization and that tolerance was not transferable with splenocytes indicates that the suppression of T(H)2 responses in polysensitized mice might not be mediated by immunosuppressive cytokines. Our study demonstrates that it is possible to suppress allergic immune responses simultaneously to several clinical important allergens. Thus, mucosal coapplication of selected peptides/hybrid peptides could be the basis of a mucosal polyvalent vaccine to prevent multiple sensitivities in atopic patients.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.