Abstract

It is well known in clinical practice that Alzheimer's disease (AD) is closely associated with brain insulin resistance, and the cerebral insulin pathway has been proven to play a critical role in the pathogenesis of AD. However, finding the most efficient way to improve brain insulin resistance remains challenging. Peripheral administration of insulin does not have the desired therapeutic effect and may induce adverse reactions, such as hyperinsulinemia, but intranasal administration may be an efficient way. In the present study, we established a brain insulin resistance model through an intraventricular injection of streptozotocin, accompanied by cognitive impairment. Following intranasal insulin treatment, the learning and memory functions of mice were significantly restored, the neurogenesis in the hippocampus was improved, the level of insulin in the brain increased, and the activation of the IRS-1-PI3K-Akt-GSK3β insulin signal pathway, but not the Ras-Raf-MEK-MAPK pathway, was markedly increased. The olfactory bulb-subventricular zone-subgranular zone (OB-SVZ-SGZ) axis might be the mechanism through which intranasal insulin regulates cognition in brain-insulin-resistant mice. Thus, intranasal insulin administration may be a highly efficient way to improve cognitive function by increasing cerebral insulin levels and reversing insulin resistance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.