Abstract

The XBB.1.5 subvariant has garnered significant attention due to its exceptional immune evasion and transmissibility. Significantly, the evolutionary trajectory of SARS-CoV-2 has shown continual progression, with a recent global shift observed from XBB to BA.2.86, exemplified by the emergence of the predominant JN.1 subvariant. This phenomenon highlights the need for vaccines that can provide broad-spectrum antigenic coverage. In this study, we utilized a NS1-deleted (dNS1) influenza viral vector to engineer an updated live-attenuated vectored vaccine called dNS1-XBB-RBD. This vaccine encodes the receptor-binding domain (RBD) protein of the XBB.1.5 strain. Our findings demonstrate that the dNS1-XBB-RBD vaccine elicits a similar systemic and mucosal immune response compared to its prototypic form, dNS1-RBD. In hamsters, the dNS1-XBB-RBD vaccine provided robust protection against the SARS-CoV-2 immune-evasive strains XBB.1.9.2.1 and Beta. Remarkably, nasal vaccination with dNS1-RBD, which encodes the ancestor RBD gene, also effectively protected hamsters against both the XBB.1.9.2.1 and Beta strains. These results provide valuable insights about nasal influenza-vectored vaccine and present a promising strategy for the development of a broad-spectrum vaccine against COVID-19 in the future.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.