Abstract

Glial cell line-derived neurotrophic factor (GDNF) plays important roles in protecting the damaged or dying dopamine neurons in the animal models of Parkinson's disease (PD). This study was to determine the effect and mechanisms of GDNF on the apoptosis of neurons in 6-hydroxydopamine (6-OHDA) induced Parkinson's disease model of rats. Healthy male Sprague-Dawley rats (220-240g) were randomly divided into six groups (n = 10). 6-OHDA was used to establish the PD rat model. Tyrosine hydroxylase (TH) immunohistochemistry was used to assess the neuron loss in 6-OHDA-lesioned rats. TUNEL and western blot were used to identify the effects and mechanisms of GDNF in the rat model of PD. The numbers of TH-positive neurons in the 6-OHDA-injected lesioned substantia nigra (SN) decreased significantly compared with the Sham group. GDNF treatment effectively ameliorated the apoptosis of neuronal cells in SN induced by 6-OHDA. In addition, GDNF significantly increased serine protein kinase B (Akt) and glycogen synthase kinase 3 beta (GSK3β) phosphorylation induced by 6-OHDA. In contrast, application of LY294002 or triciribine reversed the roles of GDNF in PD models. The results implicated that the anti-apoptosis effects of GDNF in neurons might be mediated through PI3K/Akt/GSK3β pathway. Therefore, GDNF may be a promising agent for PD treatment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.