Abstract

Introduction: Neonatal hypoxic-ischemic brain injury (HIBI) results in significant morbidity and mortality despite current available therapies. Seeking a potential supplemental therapy for HIBI, we investigated the neuroprotective effects of extracellular vesicles derived from neural stem cells (NSC-EVs) and hypoxia-preconditioned brain cells (brain-EVs). Methods: HIBI was induced in postnatal day 9 mice by carotid ligation followed by hypoxia. Following injury, NSC-EVs, brain-EVs, or saline were administered intranasally. Brains were assessed for infarct size, terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining, and caspase-3 expression. Additionally, brain-EV microRNA (miRNA) contents were analyzed by miRNA sequencing. Results: Both EV treated groups showed decreased infarct size (brain-EVs p = 0.004 and NSC-EVs p = 0.052), and although NSC-EV administration resulted in significantly fewer TUNEL+ cells (p = 0.0098), there was no change in caspase-3 expression after NSC-EV administration, suggesting a caspase-3-independent mechanism. Brain-EVs resulted in a nonsignificant decrease in TUNEL+ cells (p = 0.167) but significant decreases in caspase expression (cleaved p = 0.015 and intact p = 0.026). Brain-EVs consistently expressed several miRNAs, including two which have been shown to be downregulated after HIBI: miR-342-3p and miR-330-3p. Conclusion: Understanding the regenerative effects and contents of NSC-EVs and brain-EVs could allow for the development of targeted EV-based therapies that could reduce morbidity and mortality for neonates affected by HIBI.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.