Abstract
Targeting the common molecular mechanism of type 2 diabetes mellitus and Alzheimer's disease (AD), including dysregulation of glucose metabolism, insulin resistance, and neuroinflammation, might be an efficient treatment strategy for AD. Previous studies have shown that 15-deoxy-Δ12,14-prostaglandin J2 (15d-PGJ2), an endogenous PPARγ agonist, has anti-inflammatory, insulin sensitizing and anti-diabetic effects. However, whether 15d-PGJ2 has beneficial effects on AD remains to be elucidated. In the present study, we found that intranasal administration of 15d-PGJ2 (300 ng/30 μL/day) for 3 months significantly inhibited Aβ plaques, suppressed neuroinflammation, and attenuated cognitive deficits in APP/PS1 transgenic mice. Interestingly, 15d-PGJ2 treatment could increase brain glucose uptake, as detected by 18F-FDG microPET imaging, and co-localization of GLUT4 and NeuN in the hippocampus of APP/PS1 mice. Furthermore, 15d-PGJ2 markedly increased the expression of PPARγ and PGC-1α, upregulated GLUT4, and decreased the phosphorylation of IRS-1 (Ser616) in the hippocampus of APP/PS1 mice. Importantly, co-administration of a PPARγ antagonist GW9662 abrogated these protective effects of 15d-PGJ2. Collectively, intranasal 15d-PGJ2 conferred protective effects against AD by activating PPARγ-dependent PGC-1α/GLUT4 signalling. The PPARγ agonist 15d-PGJ2 might be a potential therapeutic drug for AD.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.