Abstract

Intramural gradients of intracellular Ca(2+) (Ca(i)(2+)) Ca(i)(2+) handling, Ca(i)(2+) oscillations, and Ca(i)(2+) transient (CaT) alternans may be important in long-duration ventricular fibrillation (LDVF). However, previous studies of Ca(i)(2+) handling have been limited to recordings from the heart surface during short-duration ventricular fibrillation. To examine whether abnormalities of intramural Ca(i)(2+) handling contribute to LDVF, we measured membrane voltage (V(m)) and Ca(i)(2+) during pacing and LDVF in six perfused canine hearts using five eight-fiber optrodes. Measurements were grouped into epicardial, midwall, and endocardial layers. We found that during pacing at 350-ms cycle length, CaT duration was slightly longer (by ≃10%) in endocardial layers than in epicardial layers, whereas action potential duration (APD) exhibited no difference. Rapid pacing at 150-ms cycle length caused alternans in both APD (APD-ALT) and CaT amplitude (CaA-ALT) without significant transmural differences. For 93% of optrode recordings, CaA-ALT was transmurally concordant, whereas APD-ALT was either concordant (36%) or discordant (54%), suggesting that APD-ALT was not caused by CaA-ALT. During LDVF, V(m) and Ca(i)(2+) progressively desynchronized when not every action potential was followed by a CaT. Such desynchronization developed faster in the epicardium than in the other layers. In addition, CaT duration strongly increased (by ∼240% at 5 min of LDVF), whereas APD shortened (by ∼17%). CaT rises always followed V(m) upstrokes during pacing and LDVF. In conclusion, the fact that V(m) upstrokes always preceded CaTs indicates that spontaneous Ca(i)(2+) oscillations in the working myocardium were not likely the reason for LDVF maintenance. Strong V(m)-Ca(i)(2+) desynchronization and the occurrence of long CaTs during LDVF indicate severely impaired Ca(i)(2+) handling and may potentially contribute to LDVF maintenance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.