Abstract

We examined the role of peripheral cholinergic and noncholinergic mechanisms in esophageal peristalsis. Intramural nerve elements in rings of circular muscle from six different levels of the opossum esophagus were stimulated transmurally so as to cause neurally mediated muscle contractions. Stimulus frequency was varied from 2 to 40 Hz. An increase in stimulus frequency caused an increase in latencies of contractions in rings from distal esophageal sites and a decrease in latencies in rings from proximal sites. This resulted in a marked slowing of the calculated peristaltic speed. Increasing stimulus frequency also caused an increase in duration and amplitude of contractions. These effects were reversed by atropine (0.1 microM), suggesting that higher stimulus frequencies recruited more cholinergic nerves. In the presence of atropine, increasing the stimulus frequency caused an increase in latencies of contraction at all sites, suggesting that increasing stimulation frequency applied to noncholinergic nerves causes an increase in latencies of contraction at all sites. The results of this study indicate that both noncholinergic and cholinergic nerves play a role in the peripheral mechanism of esophageal peristalsis. Cholinergic nerve stimulation reduces the latency and enhances the amplitude and duration of contractions seen with noncholinergic nerve stimulation alone. The influence of cholinergic innervation is most prominent proximally and decreases distally along the smooth muscle portion of the esophagus. This peripherally located gradient of cholinergic innervation plays an important role in determining the speed and amplitude of esophageal peristalsis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.