Abstract

Abstract The tetrahedral geometry of organolead(IV) compounds can be readily transformed by using an organic ligand containing a dangling-arm oxygen functionality. The acidity of the Pb center results in so-called secondary bonding between O and Pb thereby pushing the geometry at Pb toward a trigonal bipyramidal (tbp) structure. Replacing a phenyl group by a chlorine atom dramatically enhances this phenomenon. Thus for (o-methoxybenzyl) triphenyllead (4), and (o-methoxybenzyl)diphenyllead chloride (5), the Pb–O internuclear distances are 3.362(4) and 2.845(3) Å, respectively; 83% (4) and 70% (5) of the sum of the van der Waals Pb and O radii. Within the group 14 element congeners the structural analysis of the (o-methoxybenzyl)triphenylE compounds, E = Si, Ge, Sn, and now Pb, demonstrates the relative acidities of E are Si < Ge < Sn < Pb.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.