Abstract
In nine polyatomic molecules, we have studied the intramolecular redistribution of vibrational energy from chromophore C═O group excited by a resonant femtosecond IR laser radiation at a wavelength of ∼5 μm. All experiments have been performed in the gas phase using the IR-IR pump-probe technique in combination with the spectral analysis of the probe radiation. For molecules with one C═O end group, characteristic times of intramolecular vibrational redistribution (IVR) lie in the range between 2.4 and 20 ps and correlate with the density of four-frequency Fermi resonances. The IVR times in metal carbonyl molecules are anomalously long, being ∼1.0 ns for Fe(CO)5 and ∼1.5 ns for Cr(CO)6. In the CH3(C═O)OC2H5 and H2CCH(C═O)OC2H5 molecules, it has been observed that there are two characteristic IVR times, which differ by an order of magnitude from each other; this was interpreted in terms of the developed model of "accumulating states". For the ICF2COF molecule, it has been revealed that the IVR time decreases with increasing level of the vibrational excitation of the C═O bond of the molecule.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.