Abstract
The localization and activity of the SHP2 tyrosine phosphatase across different cellular compartments to the target substrates are steered by the binding of phosphotyrosine (pY) peptides to the tandem SH2 domains. The most N-terminal domain (N-SH2) can also keep the enzyme inactive by intramolecular occlusion of the catalytic site. Enzyme activity can be recovered by an allosteric disruption of this self-inhibitory docking upon the binding of pY peptides to the N-SH2 domain. Prior to this, the N-SH2 domain must abandon the closed conformation because it impedes the access of pY peptides to the binding cleft. Although it cooperates with the self-inhibitory docking in the negative regulation of the phosphatase activity, the structural determinants of the stability of the closed conformation in the self-inhibited phosphatase are still elusive. To address this issue, a molecular dynamics simulation study is carried out. It is shown that the closed conformation is stabilized by the interaction of the N-SH2 domain with a conserved peptide portion in the region encoded by PTPN11 exon 6 (E6).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.