Abstract

Safety is fundamental for the practical development and application of energetic materials. Three tricyclic energetic compounds, namely, 1,3-di(1H-tetrazol-5-yl)-1H-1,2,4-triazol-5-amine (ATDT), 5'-nitro-3-(1H-tetrazol-5-yl)-2'H-[1,3'-bi(1,2,4-triazol)]-5-amine (ATNT), and 1-(3,4-dinitro-1H-pyrazol-5-yl)-3-(1H-tetrazol-5-yl)-1H-1,2,4-triazol-5-amine (ATDNP), were effectively synthesized through a simple two-step synthetic route. The introduction of intramolecular hydrogen bonds resulted in excellent molecular planarity for the three new compounds. Additionally, they exhibit regular crystal packing, leading to numerous intermolecular hydrogen bonds and π-π interactions. Benefiting from planar tricyclic structural features, ATDT, ATNT, and ATDNP are insensitive (IS > 60 J, FS = 360 N) when exposed to external stimuli. Furthermore, ATNT (Td = 361.1 °C) and ATDNP (Td = 317.0 °C) exhibit high decomposition temperatures and satisfying detonation performance. The intermolecular hydrogen bonding that produced this planar tricyclic molecular structure serves as a model for the creation of innovative multiple heterocycle energetic materials with excellent stability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.