Abstract

Quantum mechanical calculations were used to determine the structure and stability of second-generation peroxy and alkoxy radicals formed in the atmospheric degradation of isoprene (2-methyl-1,3-butadiene). Certain of these radicals exhibit a novel hydrogen bonding motif, consisting of two intramolecular hydrogen bonds. The hydrogen bonds are donated in series, with an enol group donating a hydrogen bond to a −CH2OH group, which donates in turn to the oxygen radical center. This hydrogen bonding motif opens a new reaction pathway: the simultaneous transfer of two H-atoms across the hydrogen bonds with a barrier of only ∼5 kcal/mol in the alkoxy radicals, but ∼20 kcal/mol in the peroxy radicals. Rate constants for these reactions were calculated, and the effects of tunneling on the rate constant were examined. All species and reactions were analyzed at the B3LYP/6-311G(2df,2p) level of theory; the transition states for the double H-atom transfer reactions were also studied using the MPW1K functional and t...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.