Abstract

Within the enzyme trimethylamine dehydrogenase [TMADH], intramolecular electron transfer occurs between a fully reduced covalently bound 6-S-cysteinylflavin [FMN] cofactor, and an oxidized iron-sulfur [4Fe-4S]2+ center. When the enzyme is reduced by substrate trimethylamine, the kinetics of this intramolecular electron transfer [ET] reaction are biphasic, suggesting that ET occurs via two alternative processes [Falzon, L., & Davidson, V.L. (1996) Biochemistry 35, 2445-2452]. The formation of the FMN semiquinone was monitored by stopped-flow spectroscopy, and the two rate constants for the biphasic reaction were determined at temperatures ranging from 12 to 37 degrees C. Analysis of these rate constants by ET theory yielded values of 2.2 eV for the reorganizational energy [lambda] associated with each reaction and electronic coupling [H(AB)] of 5.9 and 47 cm-1 for the slower and faster ET reactions, respectively. The analysis also predicted average theoretical distance between the two redox centers of 12.3 A for the slower reaction and 8.1 A for the faster reaction. These predicted distances correlate well with the known crystal structure of TMADH and the most efficient pathways for ET that were predicted from the known structure using the Greenpath program. This analysis suggests that for each reaction the ET event is rate-limiting, but coupled to a highly unfavorable non-ET process, and that binding of a second molecule of substrate to reduced TMADH decreases the efficiency of the intramolecular ET.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.