Abstract

Low conductivity and hole mobility in the pristine metal phthalocyanines greatly limit their application in perovskite solar cells (PSCs) as the hole-transporting materials (HTMs). Here, we prepare a Ni phthalocyanine (NiPc) decorated by four methoxyethoxy units as HTMs. In NiPc, the two oxygen atoms in peripheral substituent have a modified effect on the dipole direction, while the central Ni atom contributes more electron to phthalocyanine ring, thus efficiently increasing the intramolecular dipole. Calculation analyses reveal the extracted holes within NiPc are mainly concentrated on the phthalocyanine core induced by the intramolecular electric field, and further to be transferred by π-π stacking space channel between NiPc molecules. Finally, the best efficiency of PSCs with NiPc as dopant-free HTMs realizes a record value of 21.23 % (certified 21.03 %). The PSCs also exhibit the good moisture, heating and light stabilities. This work provides a novel way to improve the performance of PSCs with free-doped metal phthalocyanines as HTMs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.