Abstract

The thiopurine prodrugs 6-mercaptopurine and azathioprine are among the world's essential medications for acute lymphoblastic leukemia, immunosuppression and several autoimmune conditions. Thiopurine prodrugs are efficient UVA absorbers and singlet oxygen generators and the long-term treatment with these prodrugs correlates with a high incidence of sunlight-induced skin cancer in patients. In this contribution, we show that the electronic relaxation mechanisms and photochemical properties of azathioprine are remarkably different from those of 6-mercaptopurine upon absorption of UVA radiation. UVA excitation of 6-mercaptopurine results in nearly 100% triplet yield and up to 30% singlet oxygen generation, whereas excitation of azathioprine with UVA leads to triplet yields of 15-3% depending on pH of the aqueous solution and <1% singlet oxygen generation. While photoexcitation of 6-mercaptopurine and other thiopurine prodrugs can facilitate oxidatively generated cell damage, azathioprine's poor photosensitization ability reveals the use of interchromophoric charge-transfer interactions for the molecular design of photostable prodrugs exhibiting a remarkable reduction in photocytotoxic side effects before drug metabolization.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.