Abstract
The syntheses of 4-nitro thiol benzoate esters of ethyl 2-mercaptoacetate, thioglycolic acid, 2-(dimethylamino)ethanethiol, and 2-(N,N,N-trimethylammono)ethanethiol iodide (10−13) have been carried out and their rates of hydrolysis at 50 °C studied as a function of pH. Thiol esters 10 and 13 have linear pH−log kobs profiles indicative of an exclusive specific base attack of OH-. Thiol esters 11 and 12 exhibit a plateau in their pH/log kobs profiles due to the participation of pendant carboxylate and dimethylamino groups, respectively, most probably as intramolecular general bases. At higher pH, specific base catalysis becomes predominant for both 11 and 12. In the plateau region, the hydrolysis of 12 is subject to a solvent deuterium kinetic isotope effect of 2.2, consistent with the operation of a general base role for the pendant dimethylamino group. The hydrolysis of 12 in the presence of Ellman's reagent produces the Ellman's anion at a rate that is identical to that for disappearance of the thioester...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.