Abstract

The dangler manganese center in the oxygen-evolving complex (OEC) of photosystem II plays an important role in the oxidation of water to dioxygen. Inspired by the structure of the OEC, we synthesized a series of site-differentiated tetra-manganese clusters [LMn3(PhPz)3OMn][OTf]x (2: x = 2; 3: x = 1) that features an apical manganese ion-distinct from the others-that is appended to a trinuclear manganese core through an μ4-oxygen atom bridge. This cluster design was targeted to facilitate studies of high-valent Mn-oxo formation, which is a proposed step in the mechanism for water oxidation by the OEC. Terminal Mn-oxo species-supported by a multinuclear motif-were targeted by treating 2 and 3 with iodosobenzene. Akin to our previously reported iron complexes, intramolecular arene hydroxylation was observed to yield the C-H bond oxygenated complexes [LMn3(PhPz)2(OArPz)OMn][OTf]x (5: x = 2; 6: x = 1). The fluorinated series [LMn3(F2ArPz)3OMn][OTf]x (8: x = 2; 9: x = 1) was also synthesized to mitigate the observed intramolecular hydroxylation. Treatment of 8 and 9 with iodosobenzene results in intramolecular arene C-F bond oxygenation as judged by electrospray ionization mass spectrometry. The observed aromatic C-H and C-F hydroxylation is suggestive of a putative high-valent terminal metal-oxo species, and it is one of the very few examples capable of oxygenating C-F bonds.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.