Abstract

Recent experimental studies have identified Ru(II) NHC complexes that are highly reactive in the tandem intramolecular C(sp3)–H activation of an N-alkyl substituent to form a metallacycle and transfer hydrogenation of alkenes. These complexes are promising candidates for tandem catalytic processes that depend on a reversible uptake of hydrogen (“borrowing hydrogen catalysis”). We have elucidated the reaction mechanisms by density functional theory calculations and investigated ligand effects on reactivity. The reaction of ruthenium dihydride complex [Ru(H)2(NHC)(CO)(PPh3)2] (1) with ethylene occurs via dissociative ligand exchange to replace one of the phosphine ligands with ethylene, followed by hydride migration and reductive elimination to form a Ru(0) intermediate. Subsequent C–H activation occurs via an oxidative addition mechanism. Bulkier NHC and phosphine ligands facilitate the dissociation of phosphine, which leads to a lower overall barrier. In addition, the N-iPr substituted NHC ligand promotes...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call