Abstract

Stable ligation: A series of dendritic porphyrins, such as that depicted in which benzyl ether dendrons were linked to a porphyrin core through 1,2,3-triazole links, was synthesized. Absorption and fluorescence spectra showed a stable axial ligation at the zinc center of the porphyrin core by triazole links in dendritic wedges and indicated that the position of the triazole links strongly affected the stability of the axial ligation within the dendrimer.A series of dendritic porphyrins 7-9 and 12, in which benzyl ether dendrons were linked to a porphyrin core through 1,2,3-triazole links, were synthesized by Cu(I)-catalyzed cycloaddition of azides and alkynes. Absorption and fluorescence spectra showed a stable axial ligation at the zinc center of the porphyrin core by triazole links in dendritic wedges and indicated that the position of the triazole links strongly affected the stability of the axial ligation within the dendrimer. When the porphyrin core was surrounded by aryl ether dendrons having anionic termini and triazole linkers, a significant rate enhancement for photoinduced electron transfer was observed compared with a similar water-soluble dendritic zinc porphyrin lacking triazole linkers. These triazole links constituted a direct pathway within the dendrimer architecture for electron transfer between the zinc porphyrin core and peripheral electron acceptors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.