Abstract
Protein kinase B (PKB/Akt) is a pivotal regulator of diverse metabolic, phenotypic, and antiapoptotic cellular controls and has been shown to be a key player in cancer progression. Here, using fluorescent reporters, we shown in cells that, contrary to in vitro analyses, 3-phosphoinositide–dependent protein kinase 1 (PDK1) is complexed to its substrate, PKB. The use of Förster resonance energy transfer detected by both frequency domain and two-photon time domain fluorescence lifetime imaging microscopy has lead to novel in vivo findings. The preactivation complex of PKB and PDK1 is maintained in an inactive state through a PKB intramolecular interaction between its pleckstrin homology (PH) and kinase domains, in a “PH-in” conformer. This domain–domain interaction prevents the PKB activation loop from being phosphorylated by PDK1. The interactive regions for this intramolecular PKB interaction were predicted through molecular modeling and tested through mutagenesis, supporting the derived model. Physiologically, agonist-induced phosphorylation of PKB by PDK1 occurs coincident to plasma membrane recruitment, and we further shown here that this process is associated with a conformational change in PKB at the membrane, producing a “PH-out” conformer and enabling PDK1 access the activation loop. The active, phosphorylated, “PH-out” conformer can dissociate from the membrane and retain this conformation to phosphorylate substrates distal to the membrane. These in vivo studies provide a new model for the mechanism of activation of PKB. This study takes a crucial widely studied regulator (physiology and pathology) and addresses the fundamental question of the dynamic in vivo behaviour of PKB with a detailed molecular mechanism. This has important implications not only in extending our understanding of this oncogenic protein kinase but also in opening up distinct opportunities for therapeutic intervention.
Highlights
A key downstream relay in various growth factors and hormones is the activation of the serine/threonine protein kinase (PKB/Akt)
We studied the molecular mechanisms of Protein kinase B (PKB)’s interaction with its upstream regulator, 3-phosphoinositide– dependent protein kinase 1 (PDK1)
We show that PKB and 3-phosphoinositide–dependent protein kinase 1 (PDK1) are found as complexes in the cytoplasm
Summary
A key downstream relay in various growth factors and hormones is the activation of the serine/threonine protein kinase (PKB/Akt). Its activation is thought to proceed through the recruitment of the protein to membranes via interaction of its PH domain with the phosphoinositides produced by phosphoinositide-3-kinase [ PtdIns (3,4,5)P3 and PtdIns (3,4)P2] [6,7]. The lipid-bound PKB is phosphorylated by 3-phosphoinositide–dependent protein kinase 1 (PDK1), which is recruited through its PH domain binding to PtdIns (3,4,5)P3. The PDK1 phosphorylation, critical for activation, occurs at Thr308 in the activation T-loop of PKBa [8]. The current models of PKB activation only speculate, based on the regulation of other AGC kinases, how PKB may change its conformation to interact with PtdIns at the plasma membrane and thereafter be activated by PDK1. The functionally independent behaviour of the PH and kinase domains of PKB is well
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.