Abstract

Isolated rabbit heart mitochondria were incubated with varying amounts of inorganic pyrophosphate in 250 mM sucrose to specifically decrease the pool size of endogenous adenine nucleotides. The endogenous adenine nucleotide content decreased by as much as 80% as a result of this treatment. Phosphorylating respiration (state 3) declined from about 340 to 180 nAtoms O . min-1 . mg protein-1 over the full range of intramitochondrial adenine nucleotides measured (approx 7.5-1.5 nmol/mg protein). Uncoupled and nonphosphorylating (state 4) rates of respiration were not greatly affected by adenine nucleotide depletion. Respiratory activity of the adenine nucleotide-depleted mitochondria was enhanced by addition of exogenous adenosine 5'-triphosphate (ATP). Partial depletion (approx 40%) of the intramitochondrial adenine nucleotides resulted in an impaired ability of heart mitochondria to retain Ca2+. Premature Ca2+ efflux was associated with organelle swelling and altered energy coupling. Exogenous ATP or adenosine 5'-diphosphate (ADP) added prior to Ca2+ efflux restored Ca2+ retention in these mitochondria. Atractyloside inhibited the restoration of Ca2+ retention. This study indicates a significant role for endogenous adenine nucleotides in maintaining oxidative phosphorylation and Ca2+ transport in heart mitochondria. The results are discussed with regard to significance in ischemic heart damage.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.