Abstract

The distribution of mannosyl-, glucosaminyl- and glucosyltransferases in rough and smooth microsomes isolated from rat liver homogenate has been investigated. Amphomycin and tunicamycin were used as inhibitors of dolichol-mediated glycosylation, and diazobenzene sulfonate and proteolytic enzymes were used as nonpenetrating surface probes. Under in vitro conditions only 20–30% of the proteins glycosylated are of the secretory type. Nonpenetrating surface probes, which interact with components on the outer surface of rough microsomal vesicles, decrease glycosylation of both secretory and membrane proteins to a great extent. Inhibitor sensitive glycosylation is present in both the outer and inner compartments of the microsomal membranes. In contrast, the surface probes and the inhibitors of dolichol-mediated glycosylation do not significantly affect protein glycosylation in smooth microsomes. When dolichol phosphate sugars were used as substrates, instead of nucleotide sugars, the probes used inhibited protein glycosylation in both subfractions. Glycosylation of externally added Lipidex-bound dolichol monophosphate and of ovalbumin were in agreement with the above results. It appears that both rough and smooth microsomes may possess several types of glycosylating pathways. The most prominent of these in rough microsomes under the conditions used is the dolichol mono- and pyrophosphate-mediated glycosylation of endogenous proteins, where the enzymes involved in the initial steps are distributed at the outer surfaces of the microsomal vesicles. The dominating pathway in smooth microsomes appears to function in completion of the oligosaccharide chain of the protein and this process does not involve lipid intermediates and cannot be influenced by nonpenetrating surface probes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call