Abstract

The objective of this study was to evaluate the efficacy of intramammary immunization with UV-killed Escherichia coli ECC-Z on prevention of intramammary colonization after a challenge with a dose of the homologous E. coli ECC-Z live bacteria. A total of 10 cows were included in a study to evaluate the efficacy of intramammary immunization. All 10 cows received an intramammary immunization of 100 cfu of UV-killed E. coli ECC-Z bacteria into one hind quarter at the time of dry off. Approximately 2wk before the anticipated calving date, both hind quarters of all cows were challenged with 100 cfu of live E. coli ECC-Z bacteria. Five of the cows were vaccinated parenterally with a commercial J5 bacterin, and 5 cows served as controls with no parenteral vaccination. The cows were then followed over time and infection risk, clinical scores, somatic cell count, and milk production were observed over time. The results of these 10 cows showed partial protection of intramammary immunization on the outcome of a subsequent homologous intramammary challenge. Immunization resulted in a lower probability of infection, a lower bacteria count, lower somatic cell counts and milk conductivity, a lower clinical mastitis score, and increased milk production compared with unimmunized control quarters. Once the analysis was corrected for immunization, parenteral J5 vaccination had no significant effect on any of the measured parameters. These results provide the first evidence that intramammary immunization may improve the outcome of an intramammary E. coli infection in late gestation and onset of mastitis immediately following parturition. Unlike systemic vaccination, which generally does not reduce the intramammary infection risk, the intramammary immunization did show a 5-times reduced odds of an established intramammary infection after challenge. Cytokine profiles indicated a local return of proinflammatory response after challenge as the data showed a more pronounced increase in in IFN-γ with a subsequent negative feedback due to a spike in the level of IL-10 in immunized quarters relative to nonimmunized quarters. Although these results are preliminary and obtained on only 10 cows, the results provide insight into the biological benefits of triggering mucosal immunity in the mammary gland.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.