Abstract

Ultrasound (US) incident obliquely on a cylindrical vessel is redistributed in space when the propagation path includes walls with acoustic impedance different from that of the surrounding media. We investigated this using low-density polyethylene (PE) as the vessel wall material. Both simulations and experiments were carried out. Direct hydrophone measurements of the acoustic field were made within a half section of the PE tube, and the distribution of backscattered Doppler power along a scan line was obtained using a range-Doppler instrument. Both simulation and hydrophone results demonstrate lateral shadow regions within the lumen. In every one of various Doppler flow experiments conducted, the backscattered Doppler power, compensated for on-axis transducer behaviour, increased with depth. Simulation results for an incident continuous-wave (CW) plane wave show that it tends to be focused by the curvature of the PE tube walls. The wall interactions are, however, angle-dependent and so the behaviour of a focused US beam depends on the beam as well as the walls. This study demonstrates alterations in the spatial distribution of US within a cylindrical vessel as a result of known vessel wall properties. It also provides evidence that local intensity variations within the lumen affect the relative Doppler power backscattered from small sample volumes. (E-mail: roset@maths.usyd.edu.au)

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call