Abstract

Objective: Monitoring of vessel perfusion is of high clinical importance in vascular anastomosis of free flaps. Current sensor systems are based on different principles and show limitations in validity and accuracy. Fiber optic pressure sensors exhibit high accuracy and are small in size. The aim of the present study was to evaluate the surgical feasibility of intraluminal pressure (ILP) measurements with a fiber optic pressure sensor in an animal model.Methods: In a microsurgical setting we sedated 10 Wistar rats with weight adapted phenobarbital, xylazine, and fentanyl. We performed a surgical approach to A. carotis communis and V. jugularis and introduced a 600 μm fiber optic pressure sensor into the vessels followed by measuring the ILP. The sensor was stabilized by the surrounding tissue, and the vessels were closed.Results: In all cases, surgical placement was uneventful. Measurement of intra-venous and intra-arterial pressure was possible and stable over the whole measurement period of an hour.Conclusion: Fiber optic pressure measurement in microvessels is possible and surgically feasible. An application to monitor the perfusion of free flaps seems possible.

Highlights

  • Monitoring of vessel pressure is of central importance in various clinical fields, such as the evaluation of vital parameters in patients at intensive care units

  • We performed a surgical approach to A. carotis communis and V. jugularis and introduced a 600 μm fiber optic pressure sensor into the vessels followed by measuring the intraluminal pressure (ILP)

  • Vessel monitoring is performed by plastic, maxillofacial, or otolaryngological surgeons in conjunction with micro-anastomosis and evaluation of the perfusion of different types of microsurgery flaps

Read more

Summary

Introduction

Monitoring of vessel pressure is of central importance in various clinical fields, such as the evaluation of vital parameters in patients at intensive care units. This is often performed using intraluminal catheters. Thrombosis in conjunction with these catheters is rare [1, 2]. In another clinical field, vessel monitoring is performed by plastic, maxillofacial, or otolaryngological surgeons in conjunction with micro-anastomosis and evaluation of the perfusion of different types of microsurgery flaps. The monitoring is mainly applied on the venous side of the responsible vessels [3]. Different approaches have been described [4]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call