Abstract

Deep convolutional neural network (DCNN) has achieved remarkable performance on object detection and speech recognition in recent years. However, the excellent performance of a DCNN incurs high computational complexity and large memory requirement In this paper, an equal distance nonuniform quantization (ENQ) scheme and a K-means clustering nonuniform quantization (KNQ) scheme are proposed to reduce the required memory storage when low complexity hardware or software implementations are considered. For the VGG-16 and the AlexNet, the proposed nonuniform quantization schemes reduce the number of required memory storage by approximately 50% while achieving almost the same or even better classification accuracy compared to the state-of-the-art quantization method. Compared to the ENQ scheme, the proposed KNQ scheme provides a better tradeoff when higher accuracy is required.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.