Abstract

The objective of this study is to identify essential aspects influencing radiation dose in computed tomography [CT] of the chest, abdomen and pelvis by intraindividual comparison of imaging parameters and patient related factors. All patients receiving at least two consecutive CT examinations for tumor staging or follow-up within a period of 22 months were included in this retrospective study. Different CT dose estimates (computed tomography dose index [CTDIvol], dose length product [DLP], size-specific dose estimate [SSDE]) were correlated with patient's body mass index [BMI], scan length and technical parameters (tube current, tube voltage, pitch, noise level, level of iterative reconstruction). Repeated-measures-analysis was initiated with focus on response variables (CTDIvol, DLP, SSDE) and possible factors (age, BMI, noise, scan length, peak kilovoltage [kVp], tube current, pitch, adaptive statistical iterative reconstruction [ASIR]). A univariate-linear-mixed-model with repeated-measures-analysis followed by Bonferroni adjustments was used to find associations between CT imaging parameters, BMI and dose estimates followed by a subsequent multivariate-mixed-model with repeated-measures-analysis with Bonferroni adjustments for significant parameters. A p-value <0.05 was considered statistically significant. We found all dose estimates in all imaging regions were substantially affected by tube current. The iterative reconstruction significantly influenced all dose estimates in the thoracoabdominopelvic scans as well as DLP and SSDE in chest-CT. Pitch factor affected all dose parameters in the thoracoabdominopelvic CT group. These results provide further evidence that tube current has a pivotal role and potential in radiation dose management. The use of iterative reconstruction algorithms can substantially decrease radiation dose especially in thoracoabdominopelvic and chest-CT-scans. Pitch factor should be kept at a level of ≥1.0 in order to reduce radiation dose.

Highlights

  • Computed tomography (CT) is the main diagnostic modality in oncologic imaging and is widely used for the detection and follow-up of tumors

  • We found the group of tumor patients well suited for this goal, since this cohort typically receives several consecutive CT scans with comparable imaging protocols and settings within a short period of time

  • Concerning the use of the two different machines, we found that overall 63% of all 959 patients underwent CT imaging at the same CT scanner for both points in time

Read more

Summary

Introduction

Computed tomography (CT) is the main diagnostic modality in oncologic imaging and is widely used for the detection and follow-up of tumors.

Objectives
Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.