Abstract
IntroductionThe intra-hepatic vascular anatomy in rodents, its variations and corresponding supplying and draining territories in respect to the lobar structure of the liver have not been described. We performed a detailed anatomical imaging study in rats and mice to allow for further refinement of experimental surgical approaches.MethodsLEWIS-Rats and C57Bl/6N-Mice were subjected to ex-vivo imaging using μCT. The image data were used for semi-automated segmentation to extract the hepatic vascular tree as prerequisite for 3D visualization. The underlying vascular anatomy was reconstructed, analysed and used for determining hepatic vascular territories.ResultsThe four major liver lobes have their own lobar portal supply and hepatic drainage territories. In contrast, the paracaval liver is supplied by various small branches from right and caudate portal veins and drains directly into the vena cava. Variations in hepatic vascular anatomy were observed in terms of branching pattern and distance of branches to each other. The portal vein anatomy is more variable than the hepatic vein anatomy. Surgically relevant variations were primarily observed in portal venous supply.ConclusionsFor the first time the key variations of intrahepatic vascular anatomy in mice and rats and their surgical implications were described. We showed that lobar borders of the liver do not always match vascular territorial borders. These findings are of importance for the design of new surgical procedures and for understanding eventual complications following hepatic surgery.
Highlights
The intra-hepatic vascular anatomy in rodents, its variations and corresponding supplying and draining territories in respect to the lobar structure of the liver have not been described
The portal vein anatomy is more variable than the hepatic vein anatomy
Development of advanced clinical hepatobiliary surgical procedures is closely related to imaging technologies
Summary
The intra-hepatic vascular anatomy in rodents, its variations and corresponding supplying and draining territories in respect to the lobar structure of the liver have not been described. We performed a detailed anatomical imaging study in rats and mice to allow for further refinement of experimental surgical approaches. Editor: Jordi Gracia-Sancho, IDIBAPS - Hospital Clinic de Barcelona, SPAIN
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.