Abstract

The omnivorous predators Macrolophus pygmaeus and Nesidiocoris tenuis (Hemiptera: Miridae) are important biological control agents of pests on tomato crops. In this study, potential intraguild predation (IGP) interactions between the two species were investigated on tomato. We examined: (a) the within plant distribution of both species in the field, (b) the within plant distribution of each predatory species when co-occurred at high densities on tomato caged plants, (c) their behavioral interactions when enclosed in experimental arenas and (d) the development young and old nymphs of M. pygmaeus when enclosed together with N. tenuis adults. Results revealed that the two predators showed a different distribution pattern on the plants, with N. tenuis exploiting mostly the upper part, whereas M. pygmaeus were mostly observed on the 5th to the 7th leaf from the top. However, when the predators co-occurred, N. tenuis or M. pygmaeus individuals were recorded with increased numbers on the lower or the higher part of the plant, respectively. In the presence of N. tenuis adult young nymphs of M. pygmaeus completed their development to the adult stage, when alternative prey (lepidopteran eggs) was present on the plant, however failed to reach adulthood in the absence of alternative prey. A high percentage of the dead nymphs found with their body fluids totally sucked indicating predation by N. tenuis. However, large 4th instar nymphs of M. pygmaeus were much less vulnerable to N. tenuis than younger. The behavior of N. tenuis was affected by the presence of M. pygmaeus, but at a rate similar to that when two individuals of N. tenuis were enclosed together. Contacts between the predators were recorded in a similar frequency in mono- and heterospecific treatments, whereas aggressive behavior was not observed. This study shows that intraguild interactions between M. pygmaeus and N. tenuis occur but are not intensive. The potential implications of the outcomes for biological control are discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.