Abstract

Quantification of intragranular porosity in sand-size material from an aquifer on Cape Cod, Massachusetts, by scanning electron microscopy, mercury injection, and epifluorescence techniques shows that there are more reaction sites and that porosity is greater than indicated by standard short-term laboratory tests and measurement techniques. Results from laboratory and field tracer tests show solute nonequilibrium for a reacting ion consistent with a model of diffusion into, and exchange within, grain interiors. These data indicate that a diffusion expression needs to be included in transport codes, particularly for simulation of the transport of radioactive and toxic wastes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.