Abstract

Common wheat represents a typical allohexaploid species and provides a good experimental system for studying genomic alterations associated with allopolyploidization. We studied three homoeologous loci of wheat Wknox1 gene, which is highly homologous to the knotted1 (kn1)-like homeobox (KNOX) genes functioning at shoot apical meristems (SAM). Wknox1 transcripts were detected in SAM, and its overexpression caused abnormal leaf morphology with occasional ectopic leaves in transgenic tobacco plants. A comparative study of the three Wknox1 genomic sequences revealed accumulation of a large number of mutations including insertions and deletions, particularly in the fourth intron and the 5'-upstream region. Some structural mutations including MITE-insertions were allocated in the evolutionary lineage of the wheat genome, suggesting that they occurred at all stages of wheat evolution. A mutation rate was the highest in the Wknox1b locus, which is consistent with the known highest degree of differentiation in the B genome. Despite the structural differentiation, all three Wknox1 homoeologs showed an identical expression pattern in wheat and their promoter regions induced the conserved expression pattern in transgenic tobacco plants. A potential of the intragenic diversity in homoeologs of essential genes as a tool for studying the genome evolution associated with allopolyploidization was discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.