Abstract
The gelation of milk proteins can be achieved by various means, enabling the development of diverse products. In this study, heat-set milk protein gels (15 % protein) of diverse textures were made by pH modulation and two gels were selected for dynamic in vitro gastric digestion: a spoonable soft gel (SG, pH 6.55′ Gʹ of ∼100 Pa) and a sliceable firm gel (FG, pH 5.65; Gʹ of ∼7000 Pa). The two gels displayed markedly different structural changes and digestion kinetics during gastric digestion. The SG underwent substantial structural compaction during the first 120 min of gastric digestion into a denser and firmer gastric chyme (26.3 % crude protein, G* of ∼8500 Pa) than the chyme of the FG (15.7 % crude protein, G* of ∼3000 Pa). These contrasting intragastric structural changes of the gels reversed their original textural differences, which led to slower digestion and gastric emptying of proteins from the SG compared with the FG. The different intragastric pH profiles during the digestion of the two gels likely played a key role by modulating the proteolytic activity and specificity (to κ-casein) of pepsin. Preferential early cleavage of κ-casein in SG stimulated coagulation and compaction of solid chyme, whereas rapid hydrolysis of αS- and β-caseins in the FG weakened coagulation. This study provided new insights into controlling the structural development of dairy-based foods during gastric digestion and modulating digestion kinetics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.